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Abstract. An important part of the scientific discourse is the exchange
of knowledge in the form of stringent, well-arranged, and interconnected
arguments. These ’scientific storylines’ allow to put central entities, ob-
servations, experiments, etc. into perspective and thus ease the under-
standing of underlying mechanisms, dependencies, or theories. Moreover,
taking a bird’s eye view allows to discern recurring narrative patterns
that have proven helpful for validating, comparing, and fusing informa-
tion across individual publications and even between disciplines. How-
ever, current knowledge repositories still struggle with representing such
information in a structured way. This is because narratives do not only
contain factual bits of information, but also parts like temporal devel-
opments, causal dependencies, etc. In this paper, we present an inno-
vative conceptual model using a logical overlay structure to bridge the
gaps between individual types of knowledge repositories. We also ex-
plain how narrative bindings validate modeled narratives in the sense of
provenance. In brief, narrative overlays plus adequate bindings allow to
effectively fuse knowledge and improve retrieval and discovery tasks by
structurally aligning underlying repositories only driven by some narra-
tive. Finally, we practically demonstrate the usefulness of our model by
applying it to a scientific narrative in the PubMed bio-medical collection.
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1 Introduction

A lot of today’s world – theories, insights, and decisions – has become ’data-
driven’. Making sense of vast amounts of data is usually realized using structured
knowledge repositories, e. g. relational databases, knowledge graphs, digital li-
braries, or data set registries [1, 12]. Yet, the theories, insights, etc. are usually
not part of such repositories, but have to be managed outside. In this paper,
we propose a conceptual model that integrates derived knowledge in the gen-
eral form of narratives on top of knowledge repositories. The basic idea can be
compared to peer-to-peer networks: built on top of a physical IP-based routing
infrastructure, direct connections in a logical overlay allow for creating advan-
tageous network topologies that can subsequently be used for improved routing,
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content sharing, etc. In the same way, we argue for a logical overlay as an ab-
straction layer on top of knowledge repositories that, in turn, allows us to capture
narratives, bind them to knowledge repositories, and assess essential character-
istics such as their individual validity or plausibility.

Unlike fictional narratives that tend to involve many protagonists and hence
are notoriously hard to represent [2], narratives used in practical information
systems are usually more limited and quite concise. Such narratives usually re-
late recurring explanation patterns or chains of arguments that are investigated,
modeled, and schematically represented for subsequent sharing, discussion, and
reuse by researchers in a variety of scientific domains [10]. Prime examples in-
clude chemical reactions and metabolic pathways in bio-medicine.

Throughout this paper, we will use a pharmaceutical use case with an often
occurring narrative pattern of a simple drug-drug interaction as a running exam-
ple (Fig. 1). In brief, assume that an active ingredient is metabolized in the body
by some gene system, but exactly this system is inhibited by some other drug
administered at the same time. Then the active ingredient is accumulated in the
body, which in turn may cause severe adverse effects in the form of diseases.

Looking at this simple pharmaceutical example narrative describing a typical
kind of adverse drug-drug interaction, we already get a first idea of the concepts,
which we will conceptualize in the following sections. There are entities like active
ingredients, gene systems, or drugs, there are relationships between them, such as
being metabolized by something or inhibiting something, there are events, such
as the accumulation of some active ingredient in the body, and there are causal
or temporal structures such as the failed metabolization causing an accumulation
of some active ingredient or the adverse effect diseases being a consequence of
this accumulation.

It also becomes clear why -although technically it would be possible- on a
practical level existing knowledge bases usually do not capture all of the infor-
mation in narratives: Narratives may relate causal mechanisms or developments
over time, which may refer to special cases only and may not be generally appli-
cable. In this way, unlike the factual information collected in knowledge graphs,
narratives usually do not feature truth values [13]. Entities and events related
by a narrative may happen only in individual cases (in the sense of anecdotes),
may be more or less probable (or possible), and only in the best case may be
generally valid [7]. Moreover, the use of narratives may heavily determine their
structures, e. g. more schematic for rigid scientific argumentation vs. quite free
for storytelling. Therefore a new kind of representation is needed, enriched with
strong links to factual knowledge or actual contexts. Our contributions are:

– We design a conceptual model for narratives and propose narratives to rep-
resent scientific argumentation in a structured way (Sec. 2).

– We introduce narrative bindings to verify (or at least plausibilise) each nar-
rative by grounding its parts to individual knowledge repositories (Sec. 2).

– As a first real-world use case, we demonstrate that our model in extension
with narrative queries is applicable for scientific narratives in the PubMed
bio-medical collection (Sec. 3).
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SimvastatinErythromycin

CYP3A4 Accumulation
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Fig. 1. Adverse Drug-Drug Interaction as a sample pharmaceutical Narrative

2 Modeling Scientific Narratives

In this section, we propose a model for narratives working along a typical phar-
maceutical narrative (Fig. 1) as a sample use case.

2.1 Narratives in Science

A narrative structure forms the backbone of virtually every scientific publication.
And while scientific narratives tend to be much more limited and restricted
than general narratives in fictional stories, their basic structure is similar. This
includes protagonists driving the story, and events impacting their behavior.
In this paper, we consider real-world objects and concepts, i. e. entities as the
story’s main protagonists. Considering the example above, the drugs simvastatin
and erythromycin, the disease rhabdomyolysis and the gene system CYP3A4 are
the entities of interest. We denote the set of all entities by E . In the scope of
an individual narrative, entities might interact with each other, which can be
expressed in the form of subject-predicate-object relationships, e. g. CYP3A4
metabolizes simvastatin. Here, we refer to the well-known Resource Description
Framework (RDF) for modeling factual knowledge [9]. Each relation is identified
via a predicate label like inhibits or metabolizes. Besides entities, a narrative
may speak about simple literals in the place of objects, i. e. strings or numerical
values. For example, the treatment of patients with simvastatin is naturally
associated with a specific dosage, e. g. simvastatin may be applied in a dose
of 20mg per day. We denote the set of all literals by L. Relationships between
different entities or entities and literals can be understood as factual information.
Prime examples are properties, e. g. CYP3A4 metabolizes simvastatin, as well as
structural and ontological information about entities, i. e. the type or class of
an entity. We call these relationships between entities and literals in a narrative
factual knowledge denoted by RF . The set of possible predicate labels used
for such factual knowledge is denoted by ΣF . Hence, RF ⊆ E ×ΣF × (E ∪ L).

Besides entities and literals, narratives usually feature events. In our running
example, the accumulation of a drug in the body of some patient is such an
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event, which might be observed and reported during a study. It describes the
observation that the level of a drug in the patient’s body increases. Hence, events
can be understood in the sense of some labeled observation, which happens as
the story progresses, i. e. an event is an observed state or a change of a state.
Events may also feature a temporal dimension, i. e. an event occurs, having a
starting point and sometimes an endpoint in time. We denote the set of all events
by Γ .

In most scientific narratives, events are arranged in some order to describe
the story’s progress, e. g. the accumulation of a drug leads to a severe adverse
effect inducing the disease rhabdomyolysis. There is much research invested in
analyzing the characteristics of relationships between events [2, 3, 8]. There are
several kinds of such relationships: Temporal relationships describe the temporal
order of events, i. e. a drug has to be administered first, before side effects may
occur. Causal relationships describe that an event causes some other event, e. g.
heart failure leads to a patient’s death. While temporal and causal relationships
almost exclusively exist between events, entities can also be related to events.
Usually, this either indicates that the entity participates in or is affected by
some event. Whereas factual knowledge is more about properties and ontological
information of entities, relations between events describe an argumentation’s
progress. Hence, we compose the progress of a narrative by a set of narrative
relationships denoted by RN . In brief, narrative relations feature special, non-
factual labels and can be placed between events or between events and entities,
but not between entities. We denote the set of all narrative relation labels by
ΣNR. Hence, the set of narrative relationships RN ⊆ (Γ × ΣNR × (E ∪ Γ )) ∪
(E ×ΣNR × Γ ).

Both narrative relations between entities and events, as well as factual knowl-
edge between entities and literals, form the essential backbone of a narrative.
A narrative might be composed inductively, e. g. the metabolism and inhibition
behavior of CYP3A4, simvastatin, and erythromycin, which as a whole leads to
the drug’s accumulation. This behavior is also reflected by Hauser et al. [5], who
characterize recursive elements as a key element in human language: a story can
be composed using arbitrary sub-stories.

Definition 1. A narrative is defined inductively:

1. A directed edge-labeled graph (V,E) is a narrative with V ⊆ E ∪L∪ Γ being
nodes and E ⊆ RF ∪RN being edges.

2. If n1, n2 are narratives and p ∈ ΣNR, then (n1, p, n2) is also a narrative.

That means a narrative can be understood as edge-labeled directed graphs
with events, entities, and literals as nodes and labeled edges between them.
Modeling the real world usage of narratives, we also allow them to show a re-
cursive structure. In our running example, the metabolization of simvastatin by
CYP3A4 and its inhibition by erythromycin is a three-node narrative, which
takes part as a new node in a second narrative on a higher level. Narratives
can thus act as nodes in specific narrative relations, e. g. administering both
drugs, shown on the left side of Fig. 1, causes an accumulation, resulting in an
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adverse effect, shown on the right side of Fig. 1. Please note that we intuitively
visualize recursive narratives as directed edge-labeled graphs where nodes may
encapsulate narratives: such nodes are depicted by dashed circles, which enclose
a complete graph structure of another narrative. This means that the content of
encapsulating nodes is again a directed graph, with entities, literals, and events
being the nodes and the relations being the edges.

2.2 Narrative Bindings

With narratives formally defined, we now introduce narrative bindings connect-
ing the narrative itself as a logical overlay to underlying knowledge repositories.
Binding a narrative n to a knowledge repository kr means grounding n with data
from kr as evidence. We understand the notion of knowledge repositories in a
broad sense, i. e. any structured or unstructured form of data storage, such as
knowledge graphs, relational databases, document collections, or data set reg-
istries.

Definition 2. Let n be a narrative, e be an edge of the narrative n and kr
be a knowledge repository, a narrative binding nb binds the edge e against the
knowledge repository kr with nb = (e, kr). We say that e is bound by nb.

Due to the recursive structure of narratives, there exist two types of edges:
edges between events, entities and literals and edges between enclosed narratives.
Returning to our running example, narrative bindings might easily ground the
factual knowledge in the narrative, i. e. (erythromycin, inhibits, CYP3A4 ) and
(CYP3A4, metabolizes, simvastatin), to a knowledge graph capturing important
properties of genes and drugs. It is important to note that each subgraph of
a narrative can be bound to a different knowledge repository. If all parts of a
narrative can be bound, we consider the narrative to be grounded. Formally,

Definition 3. Let n be a narrative and NB be a set of narrative bindings, we
call n grounded by NB, if all edges of n are bound by at least some nb ∈ NB.

Narrative
Binding

Fig. 2. Narratives as Logical Overlays on top of Knowledge Repositories
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With narratives, we introduce a novel model to express any form of scien-
tific discussion in a structured fashion, of course without making any claims
to its validity. However, using bindings to ground a narrative against underly-
ing knowledge repositories, at least provides some evidence for the narrative in
the sense of plausibility. Regarding a specific knowledge repository, computing
bindings in real-world applications relies on available methods for information
retrieval, natural language processing and querying capabilities. Still, it is es-
sential to note that a successful binding does not imply any guarantees on a
narrative’s validity, which is obviously heavily impacted by the quality of the
respective repositories, but also by the somewhat difficult to assess the validity
of information fusion over different sources [7].

3 Narrative Queries

We have modeled narratives to represent scientific argumentations in a struc-
tured way that is usable for information systems. However, how can we use
scientific narratives in real-world applications? We introduce narrative queries
with variables to support sense-making processes, i. e. generating new hypothe-
ses [12]. We denote the set of all variable symbols by V and write each symbol
by a leading question mark. A narrative query nq is some narrative n, where
each entity, event or literal might be replaced by a variable symbol of V. Hence,
each narrative is also a (variable-free) narrative query.

Considering our running example, we might formulate a narrative query by
replacing any node by some variable ?X. By substituting variables we can then
fill nodes by arbitrary entities, literals or events. In the following, we use the
SPARQL notation1. The set of variables used in a narrative query nq is denoted
by vars(nq) = {?v1, . . . , ?vn}. A substitution µ from V to E ∪L∪Γ is a partial
function: µ : V → E ∪ L ∪ Γ . We define the subset of V, where µ is defined, as
the domain of µ, shortly dom(µ). The substitution of the variables in a narrative
query nq by µ yields a narrative n, if all variables of the query are in dom(µ).
We use µ(nq) = n as a shortcut for this substitution.

An answer to a narrative query nq is a pair (µ(nq),NB) with a substitu-
tion µ(nq) and a set of narrative bindings NB, such that the following holds:
1. vars(nq) ⊆ dom(µ), 2. µ(nq) = n, and 3. n is grounded by NB. As a con-
sequence, answering a narrative query nq requires two steps: 1. obtaining all
substitutions {µ1, . . . , µn} and 2. obtaining narrative bindings grounding µi(nq)
for each µi ∈ {µ1, ..., µn}. If a narrative query does not include variables, its
answer is the empty substitution and a set of narrative bindings grounding the
respective narrative.

Obviously, testing arbitrary substitutions for their narrative bindings is an
expensive task. But, by first computing possible narrative bindings for the fixed
parts of a narrative query, the set of feasible substitutions can be severely
restricted. Moreover, finding such narrative bindings in structured knowledge
repositories allows for the usage of efficient query languages such as SPARQL.

1 https://www.w3.org/TR/rdf-sparql-query/
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?Y?X

CYP3A4 Accumulation
of a Drug

?D

inhibits metabolizes

causes

causes ?Y

participates

Fig. 3. A Pharmaceutical Narrative Query

3.1 Answering a Narrative Query with SemMedDB and PubMed

As a small showcase, we pose a narrative query in the biomedical domain.
We compute all narrative bindings against two knowledge repositories, namely
SemMedDB and PubMed. SemMedDB2 is a knowledge graph comprising nearly
19 million medical facts in version 2019. PubMed3 is the world’s most extensive
biomedical library with around 30 million publications and is publicly available
as the PubMed Medline 2020. Let us design a pharmaceutical narrative query
nq based on our running example, see Fig. 3. It asks for two drugs ?X and ?Y,
which both interact with the gene system CYP3A4. This interaction leads to an
adverse effect ?D triggered by the accumulation of drug ?Y in the body. A pos-
sible answer to the query nq are the substitution µ with µ(?X) = erythromycin,
µ(?Y ) = simvastatin and µ(?D) = rhabdomyolysis and the respective narrative
bindings NB against SemMedDB and PubMed. In fact, µ(nq) is exactly our
running example narrative.

But, how can we compute all answers to nq? Since ?X and ?Y are part of
purely factual knowledge inside the narrative query, we can formulate a suitable
SPARQL statement to query SemMedDB for possible substitutions of ?X and
?Y automatically. In contrast, as ?D does not participate in a factual, but in
a narrative relationship, we can derive valid substitutions for ?D by searching
for publications in PubMed, which talk about µi(?X), µi(?Y ) and CYP3A4 for
each substitution µi ∈ {µ1, . . . , µn}. If diseases are mentioned within such a pub-
lication, they serve as possible substitution µi for ?D. As an example, if a publi-
cation talks about simvastatin, erythromycin, CYP3A4 and rhabdomyolysis, we
derive the corresponding µ with µ(?X) = erythromycin, µ(?Y ) = simvastatin
and µ(?D) = rhabdomyolysis. Using SemMedDB2019 and the PubMed Medline
2020 we computed 1264 possible substitutions. These substitutions {µ1, . . . , µn}
can derive the narratives {n1, . . . , nn} by µi(nq) = ni with µi ∈ {µ1, . . . , µn}.
Due to the nature of how we have computed the substitutions, each narrative in
{n1, . . . , nn} is already grounded by bindings against SemMedDB and PubMed.
This small experiment demonstrates that answering a narrative query can auto-
matically derive a large set of grounded narratives.

2 https://skr3.nlm.nih.gov/SemMedDB/
3 https://pubmed.ncbi.nlm.nih.gov
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4 Discussion

In sum, we introduce a novel narrative overlay model to represent scientific argu-
mentations in a formal way. In contrast to integrating all knowledge repositories
into a single one, which is obviously an prohibitive task, narratives are designed
as logical overlays on top of different types of knowledge repositories. We intro-
duce narrative bindings to bind a narrative against some knowledge repository,
i. e. the narrative can be grounded by data of this knowledge repository. Ground-
ing means to find evidence for the narrative in the sense of plausibility. Finding
suitable narrative bindings to ground a narrative is still an open research task.
We showed that (for easy cases) bindings might simply be computed using estab-
lished query languages like SPARQL. However, query processing is not always
that easy, e. g. entity and relation alignments must be computed automatically or
at least semi-automatically. In the future, transforming the process of manually
defining bindings to automatically computing them is worth investigating.

Designing narratives is a task for domain experts who are familiar with
domain-specific argumentations. A domain expert can ground her narrative by
suitable bindings, which give hints and, more or less, evidence about the cor-
rectness and validity of her narrative. In a first use case, incorporating narrative
queries, we demonstrate how such a process is done in the biomedical scientific
domain. Moreover, a narrative query that includes variables enables a domain
expert to automatically design a template. This template can be used later to
derive suitable narratives by computing narrative bindings against already es-
tablished knowledge repositories. As an application, our example narrative query
might be used to discover new knowledge, e. g. the interaction between simvas-
tatin and erythromycin is inferred, iff the corresponding narrative is grounded.
Hence, narrative queries support workflows for knowledge discovery by obtaining
substitutions for variables and grounding them. Suppose a narrative cannot be
grounded, but parts of it can be. In that case, a researcher can decide whether
the not grounded parts are worth of investigation for future work.

Moreover, domain experts design narrative queries with hints for the com-
putation of bindings once, and several researchers benefit from these templates
later. A young researcher might efficiently utilize a narrative query to generate
a new hypothesis or to find suitable provenance information by having a look
at the obtained narrative bindings. Especially in domains where researchers are
not familiar with query languages, pre-designed narrative queries in conjunction
with hints for the computation of bindings assist their process by automatically
querying different knowledge graphs. Although the design of our pharmaceutical
narrative query might take some time, the query is used to explain thousands
of drug-drug interactions with adverse effects. The showcase demonstrates that
our narrative query is ready-to-use in the pharmaceutical domain for querying
and obtaining bindings against SemMedDB and PubMed automatically. Narra-
tives as logical overlays together with narrative queries enable domain experts
to collect knowledge from several different kinds of knowledge repositories. In
this way, domain experts can boost their applications’ quality without the need
for a complex integration of existing repositories.



Modeling Narrative Structures in Logical Overlays 9

5 Related Work

Extending the reach of knowledge graphs has been an extensive field of study
for many years. In knowledge graphs reification [6], as applied in the singleton
notation [11], and different strategies to capture provenance information [14]
have been proposed. These extensions aim to capture contextual or situational
knowledge that is usually not expressed due to the restrictive data structure
of RDF using binary relations. These approaches usually require high manual
expenditures, which contradicts the general idea of RDF to facilitate large scale
knowledge repositories in an easy way. And even in these cases, storing complete
narrative structures is usually not pursued.

Detecting stories in natural language texts is a topic that has sparked much
interest. Chambers et al. discussed the idea of modeling texts by extracting tem-
porally ordered sequences of events [2]. Li et al. discussed the generation of stories
by using crowd-sourced plot graphs [8]. These stories are then analyzed to find
their commonalities and to determine relevant events, as well as orders of event
sequences. These works describe a story as a sequence of events. In contrast, we
focus on modeling a complete scientific argumentation within a single model.
The general characteristics of argumentation structures have been thoroughly
analyzed by Toulmin et al. [13]. Argumentation mining aims to find suitable
arguments to a topic automatically, i. e. extracting positive and negative argu-
ments (pro and contra) [4, 10]. Especially in the scientific domain, where work is
usually published in the form of a solid argumentation, a deeper understanding
of such an argumentation and its structure is essentially needed.

6 Conclusion

Capturing argumentations in the form of narratives in a structured way has
sparked much interest. While capturing arbitrary narratives raises many prob-
lems, we focus on scientific narratives, which are usually more limited and quite
concise. In this paper, we conceptualize scientific argumentations in a novel nar-
rative model, combining factual knowledge and narrative patterns within its
scope. Utilizing a single knowledge repository to form a proper scientific nar-
rative is not sufficient. Argumentations typically operate on different types of
knowledge, e. g. on factual knowledge or situational knowledge, like observed
results of an experiment. Grounding narratives by narrative bindings gives evi-
dence about the narrative’s validity and correctness - in the sense of plausibility.
By understanding narratives as logical overlays that can be bound against dif-
ferent kinds of knowledge repositories, we bypass the extensive integration of
different knowledge repositories. Hence, we argue to keep the sources separated
and to build logical overlays on top of them. In a biomedical showcase, we utilize
a narrative on top of two large-scale knowledge repositories demonstrating the
applicability of narratives. Indeed, narrative structures are commonly used in a
wide range of scientific argumentations, e. g. chemical pathways, new theories in
physics, the behavior of systems and algorithms in computer science, sociologi-
cal observations and many more. Narratives are designed as logical overlays to
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enable information systems to represent and ground scientific argumentations
against several knowledge repositories within a single model. In the future, we
will investigate applications utilizing scientific narratives to boost the quality of
research tasks like hypothesis generation.
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